3 research outputs found

    Transient fault area location and fault classification for distribution systems based on wavelet transform and Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Get PDF
    A novel method to locate the zone of transient faults and to classify the fault type in Power Distribution Systems using wavelet transforms and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) has been developed. It draws on advanced techniques of signal processing based on wavelet transforms, using data sampled from the main feeder current to extract important characteristics and dynamic features of the fault signal. In this method, algorithms designed for fault detection and classification based on features extracted from wavelet transforms were implemented. One of four different algorithms based on ANFIS, according to the type of fault, was then used to locate the fault zone. Studies and simulations in an EMTP-RV environment for the 25kV power distribution system of Canada were carried out by considering ten types of faults with different fault inception, fault resistance and fault locations. The simulation results showed high accuracy in classifying the type of fault and determining the fault area, so that the maximum observed error was less than 2%

    Permanent Fault Location in Distribution System Using Phasor Measurement Units (PMU) in Phase Domain

    Get PDF
    This paper proposes a new method for locating high impedance fault in distribution systems using phasor measurement units (PMUs) installed at certain locations of the system. To implement this algorithm, at first a new method is suggested for the placement of PMUs. Taking information from the units, voltage and current of the entire distribution system are calculated. Then, the two buses in which the fault has been occurred is determined, and location and type of the fault are identified. The main characteristics of the proposed method are: the use of distributed parameter line model in phase domain, considering the presence of literals, and high precision in calculating the high impedance fault location. The results obtained from simulations in EMTP-RV and MATLAB software indicate high accuracy and independence of the proposed method from the fault type, fault location and fault resistance compared to previous methods, so that the maximum observed error was less than 0.15
    corecore